

INSTITUTE - UIE

Bachelor of Engineering (Computer Science & Engineering) Subject Name : CALCULUS & VECTOR SPACES Subject Code : 20SMT-175 BE :CSE(All IT branches)

DISCOVER, LEARN, EVPOWER

Introduction to Vector Spaces

Course Outcomes

CO Number	Title	Level
CO1	1) The concept of partial derivatives and its application in real	Remember &
	life situations	Understand
	2) The concept of Multiple Integrals and its applications.	
CO2	The concept of Group theory and its application of analysis to	Remember &
	Engineering problems.	Understand
CO3	The concept of vector spaces in a comprehensive manner.	Remember &
		Understand

• Course prerequisites

- ➢ Basic Knowledge of Sets.
- > Basic Knowledge of **binary operations**.
- ↗ ➤ Basic Knowledge of functions.
 - ➢ Basic Knowledge of Matrices.

Topic outcomes

- Students will able to understand basic concept of Algebraic Structures like Vector Spaces.
- Students will able to understand basic concept and properties of vector space and subspaces.
- Students now able to aware with techniques of linear algebra.

VECTOR SPACES

• Definition:

A vector space is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition and multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1) The sum of **u** and **v**, denoted by u+v, is in *V*.
- 2) u+v=v+u
- 3) (u+v)+w=u+(v+w)
- 4) There is a zero vector 0 in V such that u+(-u)=0

VECTOR SPACES

- 5) For each **u** in *V*, there is a vector -u in *V* such that u+(-u)=0
- 6) The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V
- 7) c(u+v)=cu+cv
- 8) (c+d)u=cu+du
- 9) c(du)=(cd)u
- 10) 1u=u

Example: The space of all 3x3 matrices is a vector space. The space of all matrices is **not** a vector space.

SUBSPACE

• Definition:

A subspace of a vector space V is a subset H of V that has three properties:

- 1) The zero vector of V is in H.
- 2) *H* is closed under vector addition. That is, for each **u** and **v** in *H*, the sum is in H.
- 3) *H* is closed under multiplication by scalars. That is, for each \mathbf{u} in *H* and each scalar *c*, the vector $c\mathbf{u}$ is in *H*.
- Properties (a), (b), and (c) guarantee that a subspace *H* of *V* is itself a *vector space*, under the vector space operations already defined in *V*.
- Every subspace is a vector space.

Example: The space of all 3x3 upper triangular matrices is a subspace. The space of all matrices with integer entries is not.

A SUBSPACE SPANNED BY A SET

- The set consisting of only the zero vector in a vector space V is a subspace of V, called the **zero subspace** and written as $\{0\}$.
- As the term **linear combination** refers to any sum of scalar multiples of vectors, and Span {**v**₁,...,**v**_p} denotes the set of all vectors that can be written as linear combinations of **v**₁,...,**v**_p.
- **Example:** Given \mathbf{v}_1 and \mathbf{v}_2 in a vector space V, let H=Span $(\mathbf{v}_1, \mathbf{v}_2)$. Then H is a subspace of V.

A SUBSPACE SPANNED BY A SET

- Theorem 1: If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space *V*, then Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of *V*.
- We call Span $\{v_1, ..., v_p\}$ the subspace spanned (or generated) by $\{v_1, ..., v_p\}$.
- Give any subspace H of V, a **spanning** (or **generating**) set for H is a set {**v**₁,...,**v**_p} in H such that H=Span {**v**₁,...,**v**_p}.

Linear Independence and Dependence

• A set of vectors $\{v_1, v_2, ..., v_k\}$ is *linearly independent* if the vector equation

 $x_1v_1 + x_2v_2 + \dots + x_kv_k = 0$

has only the trivial solution $x_1 = x_2 = \cdots = x_k = 0$.

Example: In set of Reals any two nonzero vectors are linearly dependent.

• A set of vectors $\{v_1, v_2, ..., v_k\}$ is *linearly dependent* if there exist numbers $x_1, x_2, ..., x_k$, not all equal to zero, such that $x_1v_1 + x_2v_2 + \cdots + x_kv_k = 0$

Example: In the space of real polynomials in X, $\{1, t, t^2\}$ are linearly independent.

9

Let V be a vector space. A minimal set of vectors in V that spans that spans is called a **basis** for is called a **basis** for V Equivalently, a basis for V is a set of vectors that

- is linearly independent;
- Spans V.

Or

A set *B* of vectors in a vector space *V* is called a **basis** if every element of *V* may be written in a unique way as a finite linear combination of elements of *B*.

10

Dimension of a vector space

Let V be a vector space not of infinite dimension. An important result in linear algebra is the following

- Every basis for V has the same number of vectors.
- The number of vectors in a basis for V is called dimension of V, denoted by **dim(V)**.

Example:

- 1) The dimension of \mathbb{R}^n is n.
- 2) The dimension of the vector space of polynomials in x with real coefficients having degree at most two is 3.
- 3) A vector space that consists of only the zero vector has dimension zero

References

Reference Books

- Elements of Discrete Mathematics, (Second Edition) C. L. Liu, McGraw Hill, New Delhi, 2017
- Graph Theory with Applications, J. A. Bondy and U. S. R. Murty, Macmillan Press, London.
- Topics in Algebra, I. N. Herstein, John Wiley and Sons. Digital Logic & amp; Computer Design, M. Morris Mano, Pearson.

Online Video Sites:

- 1. NPTEL
- 2. Coursera
- 3. Unacademy

灓